Multimodal LOS For Urban Streets

Richard Dowling – Dowling Associates
NCHRP 3-70 Research Project

- Objective: To develop a scientific basis for evaluating multimodal LOS on urban streets

- 4-year, $1.1 million project

- U.S. modal experts
 - Dr. Aimee Flannery, George Mason University
 - Dr. Nagui Rouphail, North Carolina State University
 - Bruce Landis, Sprinkle Consulting
 - Theo Petritsch, Sprinkle Consulting
 - Paul Ryus, Kittelson Associates
Data Collection

- Selected and shot video clips of 90 typical street cross sections from point of view of auto driver, bicycle rider, and pedestrian.

- Showed the clips to 120 people in video labs in four cities.
 - College Station, Texas
 - New Haven, Connecticut
 - San Francisco, California
 - Chicago, Illinois

- Asked to rate each clip’s trip experience from “best” to “worst.”
What about Transit?

- Did on-board surveys in Miami, Baltimore, Portland, and San Francisco
- No matter how bad the service, everybody on board the bus liked it.
- Used mode choice survey results and know patronage elasticities to construct transit LOS model
Introduction to MMLOS

- Multimodal Level of Service (MMLOS) Analysis for Urban Streets

- Each urban street right-of-way is shared by 4 major types of users:
 - Automobile Drivers
 - Transit Passengers
 - Bicyclists
 - Pedestrians

- The urban street should serve all users
Definition of MMLOS

- MMLOS is the degree to which the urban street design and operations meets the traveling needs of each user type.

- Four level of service grades for each street:
 - Auto LOS
 - Transit LOS
 - Bicycle LOS
 - Pedestrian LOS

<table>
<thead>
<tr>
<th>Bancroft Avenue Level of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Type</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Auto</td>
</tr>
<tr>
<td>Transit</td>
</tr>
<tr>
<td>Bicycle</td>
</tr>
<tr>
<td>Pedestrian</td>
</tr>
</tbody>
</table>
Factors Affecting Auto LOS

- Number of Stops per Mile
 - Average speed almost equally as important.
- Stops and speeds are in turn influenced by:
 - Demand, capacity, posted speed limit, number of lanes, signal timing, coordination, interference from other users (bus, bike, pedestrian)
Auto LOS – HCM 2000 Model

- LOS by Arterial Class and Speed Threshold

<table>
<thead>
<tr>
<th>Urban Street Class</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of FFS</td>
<td>45-55 mph</td>
<td>35-45 mph</td>
<td>30-35 mph</td>
<td>25-35 mph</td>
</tr>
<tr>
<td>Typical FFS</td>
<td>50 mph</td>
<td>40 mph</td>
<td>35 mph</td>
<td>30 mph</td>
</tr>
<tr>
<td>LOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>>42 mph</td>
<td>>35 mph</td>
<td>>30 mph</td>
<td>>25 mph</td>
</tr>
<tr>
<td>B</td>
<td>>34-42</td>
<td>>28-35</td>
<td>>24-30</td>
<td>>19-25</td>
</tr>
<tr>
<td>C</td>
<td>>27-34</td>
<td>>22-28</td>
<td>>18-24</td>
<td>>13-19</td>
</tr>
<tr>
<td>D</td>
<td>>21-27</td>
<td>>17-22</td>
<td>>14-18</td>
<td>>9-13</td>
</tr>
<tr>
<td>E</td>
<td>>16-21</td>
<td>>13-17</td>
<td>>10-14</td>
<td>>7-9</td>
</tr>
<tr>
<td>F</td>
<td><=16</td>
<td><=13</td>
<td><=10</td>
<td><=7</td>
</tr>
</tbody>
</table>

FFS = Free-Flow Speed
NCHRP 3-70 Auto LOS Model

- Probability that driver will perceive LOS “C” or worse

\[Pr(LOS \geq C) = \frac{1}{1 + \exp(-\alpha - \sum_k \beta_k x_k)} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha =</td>
<td>-0.623</td>
</tr>
<tr>
<td>Beta (1) =</td>
<td>+0.253</td>
</tr>
<tr>
<td>X(1) =</td>
<td>Number of Stops/mile</td>
</tr>
<tr>
<td>Beta (2) =</td>
<td>-0.3434</td>
</tr>
<tr>
<td>X(2) =</td>
<td>Proportion of Intersections with Left Turn Lanes</td>
</tr>
</tbody>
</table>
NCHRP 3-70 Auto LOS Model

- Probability that driver will perceive LOS “C” or worse

\[
\Pr(LOS \geq C) = \frac{1}{1 + \exp(-\alpha - \sum_k \beta_k x_k)}
\]

With LT lane
0 stops /mi \(\rightarrow\) 28% say LOS C or worse
5 stops /mi \(\rightarrow\) 57%
10 stops/mi \(\rightarrow\) 83%
Factors Affecting Transit LOS

- Frequency of Service
- Speed of Service
- Passenger Load
- Reliability
- Accessibility
- Bus Stop Amenities
Transit LOS Model

Transit LOS Score = 6.0 \(-1.50 \times \text{TransitWaitRideScore} + 0.15 \times \text{PedLOS}\)

\[
\text{TransitWaitRideScore} = f_h \times f_{\text{ptt}}
\]

| \(f_h\) | = headway factor
| | = the ratio of ridership expected on a route at a headway \(h\), relative to the ridership at 60-minute headways; |
| \(f_{\text{ptt}}\) | = perceived travel time factor
| | = the ratio of ridership expected at a perceived travel time rate \(PTTR\), relative to the ridership expected at a baseline travel time rate. |

The baseline travel time rate is 4 minutes/mile except for central business districts of metropolitan areas with over 5 million population, in which case it is 6 min/mile.
Converting Transit Scores to LOS

- For all modes:

<table>
<thead>
<tr>
<th>LOS Model Outputs</th>
<th>LOS Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model <=2.00</td>
<td>A</td>
</tr>
<tr>
<td>2.00 < Model <= 2.75</td>
<td>B</td>
</tr>
<tr>
<td>2.75 < Model <= 3.50</td>
<td>C</td>
</tr>
<tr>
<td>3.50 < Model <= 4.25</td>
<td>D</td>
</tr>
<tr>
<td>4.25 < Model <= 5.00</td>
<td>E</td>
</tr>
<tr>
<td>Model > 5.00</td>
<td>F</td>
</tr>
</tbody>
</table>
Factors Influencing Pedestrian LOS

- Auto Traffic and Speeds, Percent Trucks
- Lateral Separation between Vehicles and Pedestrians
 - Buffers
 - Barriers
- Crossing Difficulty
 - At intersections
 - Mid-block
- Pedestrian Density
Pedestrian LOS Model

- If there is pedestrian/bike path parallel to street:
 - Then go to existing shared use path procedures in Highway Capacity Manual to estimate LOS
 - Don’t use NCHRP 3-70 model

- If no separate ped/bike path, then Pedestrian LOS is the worse of:
 - Pedestrian Density LOS
 - New York City, San Francisco CBD LOS
 - Non-Density LOS
 - The NCHRP 3-70 MMLOS model
NCHRP 3-70 Pedestrian LOS Model

\[\text{LOS} = (0.318 \text{ Segment} + 0.220 \text{ Intersection} + 1.606) \times (\text{RCDF}) \]

RCDF = Roadway Crossing Difficulty Factor

<table>
<thead>
<tr>
<th>LOS Model Outputs</th>
<th>LOS Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model <= 2.00</td>
<td>A</td>
</tr>
<tr>
<td>2.00 < Model <= 2.75</td>
<td>B</td>
</tr>
<tr>
<td>2.75 < Model <= 3.50</td>
<td>C</td>
</tr>
<tr>
<td>3.50 < Model <= 4.25</td>
<td>D</td>
</tr>
<tr>
<td>4.25 < Model <= 5.00</td>
<td>E</td>
</tr>
<tr>
<td>Model > 5.00</td>
<td>F</td>
</tr>
</tbody>
</table>
Pedestrian Segment LOS

- Function of:
 - Lateral separation between vehicles and pedestrians
 - Barriers (trees, bushes, barricades)
 - On-Street parking
 - Presence of sidewalk
 - Width of sidewalk
 - Vehicle volumes
 - Vehicle speeds
Pedestrian Intersection LOS

- Function of:
 - Right turns on red
 - Left turns during “Walk” phase
 - Cross-street vehicle traffic
 - Cross-street vehicle speeds
 - Lanes on the cross-street
 - Vehicle volumes
 - Vehicle speeds
 - Delay waiting to cross at signal
Ped. Midblock Crossing Difficulty

- Can increase or decrease pedestrian LOS by up to 20%.
- Factor is related to the minimum of:
 - Delay waiting for gap in traffic
 - Delay walking to nearest signalized intersection
- If Jay-walking is Not legal then factor = 1.00
Factors Influencing Bicyclist LOS

- Auto Traffic
- Lateral Separation From Vehicles
- Vehicle Speeds
- Percent Trucks
- Pavement Quality
- Driveway Conflicts
Bicycle LOS Model

Bicycle LOS =
\[0.160 \times \text{(bicycle segment)} + 0.011 \times \exp(\text{signalized intersection crossing difficulty}) + 0.035 \times \text{(unsignalized and driveway conflicts)} + 2.85 \]

<table>
<thead>
<tr>
<th>LOS Model Outputs</th>
<th>LOS Letter Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (\leq 2.00)</td>
<td>A</td>
</tr>
<tr>
<td>2.00 < Model (\leq 2.75)</td>
<td>B</td>
</tr>
<tr>
<td>2.75 < Model (\leq 3.50)</td>
<td>C</td>
</tr>
<tr>
<td>3.50 < Model (\leq 4.25)</td>
<td>D</td>
</tr>
<tr>
<td>4.25 < Model (\leq 5.00)</td>
<td>E</td>
</tr>
<tr>
<td>Model > 5.00</td>
<td>F</td>
</tr>
</tbody>
</table>
To Learn More

- Final Report: NCHRP Report #616

- User’s Guide: NCHRP Web document 128

- For more information contact:
 - Kamala Parks, Dowling Associates, Oakland, CA
 - Phone: 510-839-1742 x 107, kparks@dowlinginc.com
 - Rick Dowling, Dowling Associates, Oakland, CA
 - Phone: 510-839-1742 x 120, rdowling@dowlinginc.com