November 21, 2014

Mr. Christopher Calfee, Senior Counsel
Governor's Office of Planning and Research
1400 Tenth Street
Sacramento, CA 95814

Subject: Comments on Preliminary Discussion Draft of Updates to the CEQA Guidelines Implementing Senate Bill 743 (Steinberg, 2013)

Dear Mr. Calfee:

Translutions, Inc. (Translutions) is pleased to offer the following comments on the Preliminary Discussion Draft of Updates to the CEQA Guidelines Implementing Senate Bill 743 (Steinberg, 2013). Translutions understands that the use of Levels of Service (LOS) is not always the best measure of transportation impacts. In transit adjacent infill areas where transit is the primary mode of transportation, and potential mitigation measures to improve LOS are not feasible, evaluating effects of automobile traffic of the circulation network results in delays and costs related to the project permitting and environmental compliance. Therefore, the spirit of the bill and the proposed guidelines is appreciated.

Translutions presents these comments to assist the Governor’s Office of Planning and Research (OPR) to prepare metrics that would be defensible and would not result in unnecessary delays, cost, and uncertainty for development and roadway projects.

Our comments are categorized into the following four Sections.

1. Proposed Appendix G
2. Methodological Issues
3. Other Issues
4. Mitigation Measures

Our comments are related to the validity or methodology of technical analysis and potential CEQA litigation. We hope you will find our comments constructive, and hope these help design a set of guidelines that will result in a set of metrics that can be defended by the practitioners in the field.

SECTION 1. PROPOSED APPENDIX G

a) Conflict with plan, ordinance or policy addressing the safety or performance of the circulation system, including transit, roadways, bicycle lanes and pedestrian paths?

Most Congestion Management Programs (CMPs) and General Plans include levels of service thresholds. Therefore, to “not conflict” with a plan or policy where LOS is a metric, a LOS analysis will be required. The changes in this policy still include “safety and performance” of roadways as part of the network. There is a direct correlation of safety with levels of service. Research has shown that more accidents occur at very good LOS (where there is a potential of speeding), and when LOS is very bad (highly congested conditions where the risk taking behavior of drivers, cyclists, and pedestrians increases). The inclusion of safety in this measure indirectly requires the calculation of LOS to prepare a defensible document. We recommend that the intent and the metric be better defined.
b) Cause vehicle miles traveled (per capita, per service population, or other appropriate measure) that exceeds the regional average for that land use?
Calculation of VMT for some land uses are difficult, even through use of traffic models. A more detailed discussion is included under “Proposed Methodological Issues”.

c) Result in substantially unsafe conditions for pedestrians, bicyclists, transit users, motorists or other users of public rights of way by, among other things, increasing speeds, increasing exposure of bicyclists and pedestrians in vehicle conflict areas, etc.?
The absence of LOS documentation in an environmental document could affect this metric. Based on research conducted in Florida at 149 intersections and 399 multilane highways, over 30% of accidents occur where the level of service is LOS F. The following figures show the findings of the analysis:

![SIGNALIZED INTERSECTIONS](source)

Figure 4.7: Study Sample’s Distribution for “Total Crashes” at Signalized Intersections (Considering the 5 Periods of the Day)

![MULTILANE HIGH-SPEED ARTERIAL CORRIDORS](source)

Figure 4.16: Study Sample’s Distribution for “Total Crashes” at Multilane High-Speed Arterial Corridors

In a research paper titled A method for relating type of crash to traffic flow characteristics on urban freeways, Thomas F. Golob & Wilfred W. Recker, Transportation Research Part A 38 (2004) 53–80, the
researchers state, “Distinct clusters of crashes relative to collision type, frequency, location and severity roughly arrange themselves along a standard traffic flow-density curve according to some measure analogous to level of service. This suggests that there may be a direct correspondence between level of service (a traffic performance measure) and crash typology (a traffic safety measure).”

Similar findings related to the effects of traffic flow on safety (measured by number of accidents) is summarized in published research. Based on analysis of data conducted in Greece (Accident Analysis on Two Non-Controlled Access National Highways in Greece. 1983.), the accident rate curve shows an almost linear drop from Level of service A through D – declining about 25%. The curve rises thereafter through level of service E and F reaching an accident rate at level of service F that is about three times the accident rate of level of service A. And as stated earlier, LOS A has higher accidents than B, C, and D. Caltrans, as well as most jurisdictions In Southern California use LOS D as the acceptable level of service. There appears to be reasons beyond just automobile traffic delay for selection of the LOS D criteria.

Research has shown that addition of right turn lanes increases pedestrian safety because of pedestrian uncertainty regarding vehicles turning or traveling through on shared lanes. However, addition of a turn lane would increase pedestrian crossing distance. Please provide metrics for calculation of safety benefits vs. costs.

d) Substantially induce additional automobile travel by increasing physical roadway capacity in congested areas (i.e., by adding new mixed-flow lanes) or by adding new roadways to the network?

This metric would essentially deem any roadway widening project to have a significant impact under CEQA. Although there is a correlation between congestion and travel behavior when studies evaluate congested vs. non congested conditions, often, time of travel changes instead of the mode of travel, especially of alternate modes of travel are absent. Commuter travel patterns have changed to either reach work early and leave early, or reach work late and leave late. This is seen in the Los Angeles area freeways where now the theoretical “peak hour” of street traffic (typically 7:00 a.m. to 9:00 a.m. and 4:00 p.m. to 6:00 p.m.) stretches for almost four hours in the morning and four hours in the evening. Non commute travel is usually conducted at a different time than during the peak hour as congestion increases. For instance, a person driving to the library 5 miles from home would probably go to the library at 7:00 p.m. instead of 5:30 p.m. This is especially true when alternative modes of transportation are absent.

Although some research shows that there is a correlation between lane miles and VMT, there is research pointing to an insignificant finding as well. Further, most research is based on “highway VMT”, and of course based on simple logic, more traffic would travel on highways when capacity is added to the highway. However, the impact of traffic moving from a lower classification street to the highway when capacity is added has not been evaluated in much detail, probably since data is not available at lower street levels.

e) Result in inadequate emergency access?

This is included in the current guidelines as well. We do not have any comments on this metric. Typically, agencies do not approve plans that result in inadequate emergency access.
SECTION 2. Methodological Issues

This section discusses the methods recommended for VMT calculations and associated advantages and disadvantages.

a. Using Traffic Models to Calculate VMT:
Based on our review, it appears that use of traffic models would be the best way to identify project specific VMT. Therefore, the discussion of traffic models as it relates to VMT calculations are presented here.

There are several difficulties related to use of traffic models for VMT calculation:

a. Calculating VMT from traffic models is good from a regional planning perspective. For a more project specific analysis, traffic models become flawed just based on the locations of centroid connectors on to the adjacent network. Using large traffic models for smaller project specific VMT analyses does not provide accurate results.

b. Traffic models do not have the multitude of land uses as we are aware of. For example, the model usually doesn’t differentiate between a shopping center and a Factory Outlet Store in terms of trips generated vs. the distance of travel. A person is likely to travel much farther to go to a factory outlet mall than, say, to go to a neighborhood shopping center.

c. There is a direct correlation between network density and VMT. For example, if a model only includes freeways and major roadways, and a secondary arterial is the "project", including the secondary arterial in the model will increase VMT not because people will drive more, but also because other roadways (of secondary arterial or below) are not present in the model. In theory, if a traffic model included all roadways in the circulation network, then the effects of induced VMT due to roadway construction could be calculated. On a yet smaller level, if a collector street is added to a traffic model and centroid connectors are not connected to the collector street, just based on the higher capacity of the higher classification streets, no travel would be forecast on the collector street.

d. One of the criticisms of LOS analysis listed in the “Preliminary Evaluation of Alternative Methods of Transportation Analysis”, was that “Use of LOS thresholds implies false precision”. In reality, LOS calculations can be replicated by different users, whereas model results change with every run even if the same user is running the model.

e. Traffic models are not reliable in edges of the models. For example, the SCAG model ends with an external station a few miles south of Riverside County on the I-15. Many residents in that area in Riverside County travel to San Diego for work, which would not be captured in the traffic model.

b. Using Sketch Models:
Using CalEEMod or the other listed Sketch Models in the Discussion Draft require inputting trip lengths. Since trip lengths are directly responsible for VMT, this becomes the most significant variable. VMT+ is based on essentially, regional averages. The discussion draft states that “All default data (including trip generation, average trip length, and internal trip rates) can be replaced with project specific information”. Further, trip making characteristics of an affordable housing project vs. that of a luxury condominium on the same site would be drastically different. Please provide input on how trip lengths can be calculated, especially because Courts have stated that use of CalEEMod defaults are not true representation of trip lengths.

c. Regional Average Metric:
Using the regional average metric could vary significantly based on the size and characteristics of the area. For example, the trip making characteristics of an apartment complex is Pasadena near the Goldline could be completely different from the trip making characteristics of an apartment building 3 miles from the Goldline, which would be completely different from an apartment
SECTION 3. Other Issues
This section discusses issues related to past litigation, definitions, and other issues.

a. Baseline Issue. Based on our review of available models, the use of a traffic model appears to be the best approach. However, use of a traffic model means that the “Existing Conditions” is 4-10 or more years old. For example, traffic counts used in the validation of the SCAG 2012 RTP model are from 2008 and before. Calculating regional averages based on such old data can be challenged in court based on the baseline used.

b. EIR Context. The guidelines state that, “… Also, new managed lanes (i.e. tolling, high-occupancy lanes, lanes for transit or freight vehicles only, etc.), or short auxiliary lanes, that are consistent with the transportation projects in a Regional Transportation Plan and Sustainable Communities Strategy, and for which induced travel was already adequately analyzed, generally would not result in a significant transportation impact.” Recently, a California Appellate Court took the opportunity to explore the difference between a “project” and “program” EIR, and held the EIR’s level of specificity is determined by the nature of the project rather than the title of the EIR. The court explained that a project-level EIR generally focuses on the environmental changes caused by a project, including planning, construction, and operation. A program EIR, on the other hand, generally looks at the broad policy of a planning document, i.e., a general plan (which is a much smaller area than a RTP or a SCS), and may not address potential site-specific impacts of the individual projects that may fall within the planning document. The RTP/SCS is a program level document and it is anticipated that details would lack. Therefore, under the new metrics, such projects would also have a significant impact under CEQA, unless such projects are specifically exempted.

c. Definition of Project: Several agencies have indicated that they will still require the use of LOS to size roadways and require projects to implement operational improvements even if delay is not a CEQA impact. Courts have ruled that secondary impacts of mitigation measures have to be identified. If a jurisdiction requires a project to add lanes along its frontage or construct turn lanes as a condition of approval, would a small 20-unit project have to prepare an EIR for significant transportation impacts? This can severely restrict development in California.

d. Effect on Bike Lanes: Restriping of street pavement to bike lanes are exempt from CEQA. However, if bike lanes include widening the pavement, although in theory, they would reduce VMT, they would have a significant safety impact because they would increase the distance of a pedestrian crossing.

e. VMT from Truck Traffic: If a warehouse/distribution facility is proposed anywhere along a major east-west freeway, the truck related VMT from that project would be very high. However, since a majority of goods arriving at the ports of Los Angeles and Long Beach are destined for the mid-west, the net (global or national) VMT would be very similar whether the project is located in San Bernardino County on the 15 freeway or on the I-40 near Kingman. Do the proposed guidelines exempt warehousing projects from transportation analysis? Please note that greenhouse gas analyses are typically restricted to the air basin in which the project is located.

SECTION 4. Mitigation Measures
This section discusses potential difficulties in implementation of mitigation measures.

a. Applicability of Mitigation Measures: Many of the mitigation measures recommended in the guidelines are beyond the purview of a developer. In fact, several items are beyond the purview of Cities. For example, a residential developer 5 miles from the nearest “good transit route”, cannot provide transit for
its residents. It's unlikely that a Costco or Sam’s Club will have a large percentage of customers using bikes, transit, or walking to the store.

b. **Absence of Definite Effects of Mitigation Measures:** The Friant Ranch case (*Sierra Club v. County of Fresno and Friant Ranch, P.P.*) demonstrates that use of vague and unsupported claims of mitigation measures, even if they are part of Guidelines released by a controlling agency (San Joaquin Valley Air Pollution Control District in this case). The guidelines and reduction thresholds in the CAPCOA document has large ranges. As such, the use of percentage reductions based on these guidelines could be challenged.

Conclusions

The proposed metrics appears to, albeit unintentionally we think, add a second layer of analysis on top of the current analysis process, making transportation analyses more complex than the current metrics, which was one of the concerns from stakeholders based on the evaluation paper prepared by OPR.

It is our opinion that this approach of implementing such measures statewide can lead to significant hurdles in the development process. Under the proposed guidelines projects outside of transit priority areas will require two analyses: (1) for VMT, and (2) to determine which roadways are needed to support the land uses proposed. SB-743 is a good metric within transit priority areas where addition roadway improvements are not feasible or desired (with the exception of the safety aspect); however, outside of those areas, new roadway improvements will be needed, and SB-743 will merely add a new set of analyses to CEQA documentation. Implementation of mitigation measures in areas with no transit is also unclear.

We understand the intent of SB-743 is to promote infill development to reduce VMT and hence reduce Greenhouse Gas emissions. Could the State exempt infill projects from any transportation analyses, which would encourage infill development because CEQA impacts related to levels of service is one of the main challenges infill developments face? For example, San Francisco had implemented ATG as a metric for transportation impacts even before these guidelines were proposed. Therefore, a single statewide methodology of determining impacts is not required. Could different metrics be used for projects depending on the location of the project?

Thank you for the opportunity to submit these comments. If you have any questions, please do not hesitate to contact me at (949) 232-7954. I look forward to CEQA streamlining and making projects go forward more smoothly instead of increasing costs, schedule and uncertainty because of additional analyses.

Sincerely,

translutions, Inc.

Sandipan Bhattacharjee, P.E., AICP
Principal